Higher-order recurrences for Bernoulli numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences and Recurrences for Bernoulli Numbers of Higher Order

In particular, B^\0) = B^\ the Bernoulli number of order k, and BJp = Bn, the ordinary Bernoulli number. Note also that B^ = 0 for n > 0. The polynomials B^\z) and the numbers B^ were first defined and studied by Niels Norlund in the 1920s; later they were the subject of many papers by L. Carlitz and others. For the past twenty-five years not much has been done with them, although recently the ...

متن کامل

On a Multidimensional Volkenborn Integral and Higher Order Bernoulli Numbers

In particular, the values at x = 0 are called Bernoulli numbers of order k, that is, Bn (0) = Bn k) (see [1, 2, 4, 5, 9, 10, 14]). When k = 1, the polynomials or numbers are called ordinary. The polynomials Bn (x) and numbers Bn were first defined and studied by Norlund [9]. Also Carlitz [2] and others investigated their properties. Recently they have been studied by Adelberg [1], Howard [5], a...

متن کامل

Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers

In this paper the authors establish several formulas and results for the D numbers D (k) 2n and d (k) 2n , which are analogous to the higher-order Bernoulli numbers. Some applications of these families of D numbers are also presented. Corresponding author. 1

متن کامل

Second-order Linear Recurrences of Composite Numbers

In a well-known result, Ronald Graham found a Fibonacci-like sequence whose two initial terms are relatively prime and which consists only of composite integers. We generalize this result to nondegenerate second-order recurrences.

متن کامل

Higher-order Nielsen Numbers

Suppose X , Y are manifolds, f ,g : X → Y are maps. The well-known coincidence problem studies the coincidence set C = {x : f (x) = g(x)}. The number m= dimX −dimY is called the codimension of the problem. More general is the preimage problem. For a map f : X → Z and a submanifold Y of Z, it studies the preimage set C = {x : f (x) ∈ Y}, and the codimension is m = dimX + dimY − dimZ. In case of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2009

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2009.02.015